

PDE3411 Laboratory Worksheet 6

Xilinx Vivado/SDK Tutorial

02/11/2020

This tutorial shows you how to create and run a simple MicroBlaze-based system on a Digilent Nexys-4 prototyping board.

Such a system requires both specifying the hardware architecture and the software running on it. These two are then

combined into one FPGA configuration, which is used to configure the Artix-7 FPGA located on the Nexys-4 board.

The Sample Design

This tutorial revolves around creating a system (hardware and software) that can output a simple message via the
UART (in our case over USB-UART) and blink some leds on the board. The simplest of programmable hardware
architectures that can be built involves a single processor, a MicroBlaze in our case, and some minimal support for it
(memory, interconnect). On top of this, the functionality for communicating over the UART is needed. Furthermore,
without great effort, one can add functionality for sensing and controlling other physical components present on the
Nexys-4 board (such as push buttons, switches, temperature sensor, accelerometer).

Naturally, a programmable hardware architecture will require a program (software) to run on it. In a second phase,
the tutorial will address the steps needed to build a simple software environment via Xilinx SDK.

Finally, the last part of the tutorial describes how to finally configure the FPGA with the hardware and software you
just built, how to run your design and actually display the output of the UART.

A simplistic overview of the design flow used for building the whole system is depicted in Figure 1. Note that similar
steps are taken both on the hardware and on the software flows, but the terminology is somewhat different for
historical reasons.

Creating the System Architecture (Hardware)

Hardware architectures are created using Xilinx Vivado, a GUI that helps you to specify

⚫ Which processors, memory blocks and other soft IPs (peripherals) to

use how the different IPs are interconnected

⚫ The memory map, i.e. for addresses for memory mapped IO/peripherals

⚫ How the different input/output signals map to actual pins on the FPGA and thus resources on the board

1

Hardware Flow Software Flow

Vivado SDK

Build Model Write Program

Synthesize

Compile to

Intermediate Representation

 arch.

Implement Generate Assembly

Generate Generate Executable

Bitstream (ELF)

Merge to One Configuration

Run on Nexys-4

Figure 1: Overview of the Design Flow in this Tutorial (simplistic)

The output from Vivado is that part of the FPGA configuration that describes the hardware of your system. The FPGA
and board resources require this configuration to emulate the hardware architecture you described in Vivado.

The hardware architecture in this tutorial, depicted in Figure 2, will include:

⚫ A processor: MicroBlaze

⚫ Associated local memory, dual ported - one port for data, one for instructions

⚫ A few peripherals (IPs): UART (handling serial connections), GPIO (handling onboard leds), Timer (for getting
performance data)

⚫ A bus connecting the peripherals with the processor: AXI

⚫ A clock generator and a reset generator associated with the whole system

clk Instr. port A

CPU

Local

 (MicroBlaze) Memory

rst

 Data port B

Peripheral Bus (AXI)

GPIO
UART Timer

(LEDs)

Figure 2: Overview of the Hardware Architecture in this Tutorial

1 Invoke the Vivado IDE and Create a Project

1. Open the Vivado IDE by clicking the desktop icon or by typing vivado at a terminal command line. From the
Quick Start page, select Create New Project. The New Project wizard opens.

2. In the Project Name dialog box, type the project name and location.

2

Make sure that Create subdirectory is checked. Click Next.

3. In the Project Type dialog box, select RTL Project. Click Next.

4. In the Add Sources dialog box, ensure that the Target language is set to VHDL. Leave the Simulator Language

set to its default value of Mixed. Click Next.

5. In Add Existing IP dialog box, click Next.

6. In Add Constraints dialog box, click Next.

7. In the Default Part dialog box, select Boards and choose Nexys-4 DDR. Click Next.

8. Review the project summary in the New Project Summary dialog box before clicking Finish to create the project.

2 Create an IP Integrator Design

1. From the Flow Navigator window (usually leftmost in Vivado), under IP Integrator item, select Create Block
Design. The Create Block Design dialog box opens, as in Figure 3.

2. Specify the IP subsystem design name. For this step, the tutorial will use the default value, but any name without

spaces will do. Leave the Directory field set to its default value of <Local to Project>.

3. Leave the Specify source set drop-down list set to its default value of Design Sources.

4. Click OK in the Create Block Design dialog box.

5. In the Block Design area, Diagram tab should look like in Figure 4. You can either select Add IP here, or find the
Add IP button on the left side of the Diagram tab (you will use this button when the design is not empty).

6. As shown in Figure 5, type micr in the Search field to find the MicroBlaze IP, then select MicroBlaze and press

the Enter key.

Note The IP Details window can be displayed by clicking CTRL+Q key on the keyboard.

Figure 3: Na Figure 6: Add IP

Figure 4: Add IP

 Figure 5 Search field

Use the Board Tab to Connect to Board Interfaces

There are several ways to use an existing interface in IP Integrator. Use the Board tab to instantiate
some of the interfaces that are present on the Nexys-4 board.

1. Click the Board tab. You can see as in Figure 6 that there are several components listed in that
tab. These components are present on the Nexys-4 board. They are listed under different
categories in the Board window.

 Figure 6 Using the board part interfaces

2. From the Board window, select System Clock from the Clock folder and drag and drop it into the

block design canvas. This will allow you to use the 100MHz clock generated on board and add

clocking logic to your design. (Since our designs are all synchronous, clocks will always be required!)

Click OK in the Auto Connect dialog box.

4

3. From the Board window, select 16 LEDs from GPIO folder and drag and drop it into the block design canvas.

This will allow you control the 16 on/leds on the board. Click OK in the Auto Connect dialog box.

4. From the Board window, select USB UART and drag and drop it into the block design canvas (see Figure 7).
This will allow you to communicate via the UART interface of the board with your design. This will be used to
display simple text messages from your software running on your board, in a console connected with the board
via a serial. Click OK in the Auto Connect dialog box.

 Figure 7 Selected board interfaces

6. The block design should now look like in Figure 8.

Run Block Automation

1. Click Run Automation, displayed in Figure 9.

2. The Block Automation dialog box opens as shown in Figure 10. Here we recommend you set the following
parameters (for your MicroBlaze processor):

a. set Local Memory to 64KB.

b. leave the Local Memory ECC to its default value of None.

c. leave the Cache Configuration to its default value of None. Our design will not use cache for now, but for

designs using off-chip memory this is a must, or the system will be too slow.

d. change the Debug Module option to None. To simplify the design we will not use debug, but if you want to
run your program step-by-step on the board, a debug module will be needed. Refer to the Xilinx UG940
document for more details on how to set up a debug module and also an integrated logic analyser ILA used
to monitor design signals.

e. leave the Peripheral AXI Port option to its default value of Enabled.

f. make sure the Clock Connection option is set to the 100MHz clock output of the clock wizard:

/clk_wiz_0/clk_out1 (100MHz).

5

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug940-vivado-tutorial-embedded-design.pdf

 Figure 8 Block Design after connecting the UART

3. Click OK.

 Figure 9 Run block automation

This generates a basic MicroBlaze system in the IP Integrator diagram as shown in Figure 11.

Use Connection Automation

Vivado also helps you connecting the blocks present in your design. Run Connection Automation provides several
options that you can select to make connections.

1. Click Run Connection Automation as shown in Figure 12.

2. The Run Connection Automation dialog box opens, as in Figure 13. Check all the interfaces in the left pane as in
the gure. You may leave unchecked interfaces, if you plan to connect them at a later time. You should also
inspect the options you have for the items you select in the left pane. However, at this point there is no need to
change anything.

3. Once you click OK the blocks in your design will be connected

.

6

 Figure 10: Run Block Automation dialogue box

 Figure 11: MicroBlaze System

7

You may use Run Connection Automation every time you add new IPs to your design, which need to be connected
to the rest of the system.

Adding More IPs

Some designs require more IPs than the one we introduced until now. These can be added the same way you added
the MicroBlaze processor, by clicking the Add IP button. Let us add a timer.

1. Select Add IP button in the left side of the Diagram tab, Block Design area.

2. As shown in Figure 14, type time in the Search field, select AXI Timer and press the Enter key.

3. You should now Run Connection Automation again.

4. Finally, you may also have Vivado redraw the block diagram by clicking the Regenerate Layout button found

in the same toolbar with the Add IP button.

At this point your block diagram should look similar to the one in Figure 15. The relative placement of your IPs might
be slightly different.

 Figure 12: Run connection automation

 Figure 13: Run connection automation dialog box

8

 Figure 14: Adding a timer IP

Figure 15: MicroBlaze Connected to UART, GPIO, and AXI Timer

Figure 16: Reset Input Port Properties

9

Inspecting and Manually Changing a Design

There are ways to individually check and alter connections and IPs without appealing to the automatic
Vivado features for connections and block automation.

For instance, we can check the signals in the block design, and change their attributes if
necessary. The Reset input for the system comes from a button, meaning it’s driven low (logic 0)
when pushed. As it is right now the clock logic requires a reset active high (logic 1). This is why an
inverter is automatically added for us to invert the reset signal. Otherwise, a fully implemented system
will be thus always reset. . . unless we push the reset button! Let us make sure the two signals have
the same polarity:

1. Select the reset input by clicking on it in the block design Diagram. Information about the
selected item will be displayed as in Figure 16. Notice that the Polarity is Active Low.

2. Now let us examine the clocking logic. Double click on the Clocking Wizard block. This should

bring up the Re-customize IP dialog block for the Clocking Wizard, as shown in Figure 17. The
parameters for all IPs can be inspected and changed via this dialog box, invoked in a similar
way.

3. In the Output Clocks tab, notice the Reset Type section, which is Active High. Keep this

unchanged as an inverter is used (Figure 18).

4. Click OK.

5. Once connected your design should look like in Figure 19 (not as in Figure 20).

The hardware architecture is now complete.

3 Memory-Mapping the Peripherals in IP Integrator

The processor (MicroBlaze) sees its memory and peripherals at different addresses in the address
space. Accessing a specific address may access the memory or a peripheral, depending on what is
mapped at that specific address. To examine the address map (what is mapped where in the address
space) select the Address Editor tab, located beside the Diagram tab in the Block Design window.
The memory map should look similar to the one in Figure 21. You may change any of the mappings
here, but Vivado is usually very good at selecting a map that minimizes the address decoding
complexity, so there is no need to change anything here.

4 Validate Block Design

To run design rule checks on the design:

1. Click Validate Design button on the toolbar, or select Tools->Validate Design.

2. The Validate Design dialog box informs you that there are no critical warnings or errors in the
design. Click OK.

3. Save your design using Ctrl+S or File -> Save Block Design.

10

 Figure 17: Re-Customize IP Dialog Box

 Figure 18: Keep Active High unchanged Polarity for Clocking Wizard (The figure is wrong)

11

Figure 19: Clocking Wizard with an inverter to align the polarity

Figure 20: Clocking Wizard with inverted Resetn Connected to the Reset Input Port (if no inverter presented, not

in our case)

Figure 21: System Address Space Map

5 Generate Output Products

1. In the Sources window (see Figure 22), select the block design, right-click it and select
Generate Output Products. Alternatively click Generate Block Design in the Flow Navigator.
The Generate Output Products dialog box opens (see Figure 23).

2. Select Global in Synthesis Options, and click Generate.

3. Click OK in the Generate Output Products dialog box.

 Figure 22: Sources Window

12

Figure 23: Generate Output Products Dialog Box

6 Create Top-level HDL Wrapper

1. Under Sources, right-click your design and click Create HDL Wrapper

2. In the Create HDL Wrapper dialog box, select Let Vivado manage wrapper and auto-update,
as in Figure 24. Click OK.

Figure 24: Creating an HDL Wrapper

13

7 Synthesize Design

1. In the Flow Navigator, click on Run Synthesis. This will take some time, but you can check the progress and the
output messages in the lower right window, Synthesis Log tab (see Figure 25).

2. After synthesis finishes, you can choose to have a look at the synthesised design, but finally you should Run
Implementation in the Synthesis Completed dialog box (see Figure 26). While the synthesis step refers to refi-
ning the design to a generic format (e.g. similar to software being compiled to an intermediate format), the
implementation step generates a design for the specific FPGA on your board (e.g. generating the assembly
code from the intermediate format). Click OK.

Figure 25: Following the Synthesis Log

 Figure 26: Synthesis completed dialog box

14

8 Take the Design through Implementation

The final result of the hardware design step is a bitstream - which is the low level configuration for the target FPGA. In
principle choosing Generate Bitstream in Flow Navigator will run through all the steps needed to generate this configuration.
If you are running through the process as mentioned in the previous section, and you chose to run implementation directly, a
new dialog box will open, as in Figure 27. Choose Generate Bitstream and click OK. To make an analogy with a software
flow, if the implementation step generates the assembly code, the generate bitstream step creates the machine code. Note
that this is still only the hardware to be emulated, but has no software to be run on it; this will be created later via SDK and
incorporated in the bitstream as memory contents (if it’s located in the on-chip memory).

Throughout the whole process, you may also check the different sort of reports from the different steps, available
in the lower window, Reports tab, as in Figure 28.

Figure 27: Implementation Completed Dialog Box

 Figure 28: Reports

15

Once the implementation is done, it is easy to check all sorts of parameters for the design, by selecting the right
report in Flow Navigator, Implementation section, as in Figure 29.

Figure 29: Implementation in Flow Navigator

8.1 Timing

You can check, for instance, that the timing constraints have been fulfilled (e.g. the logic can keep up with the
specified clock frequency) by selecting the Report Timing Summary. This will display detailed information in the
lower window, as in Figure 30. Do inspect the different details of the summary.

Figure 30: Timing Summary. All timing constraints are met in this case.

16

8.2 Utilization

You can also get an idea about how much of the FPGA resources your design is using by selecting Report
Utilization. This will display detailed information in the lower window, as in Figure 31. Do inspect the different details
of the summary.

8.3 Power

Finally, you can also get an estimate for the power consumption of the design by selecting Report Power. This will
display detailed information in the lower window, as in Figure 32. Do inspect the different details of the summary.

Figure 31: Utilization Summary

Figure 32: Power Summary

Creating the Software

Once the bitstream is generated, the hardware architecture is done, but it’s a blank slate, with no software to run on it.
To create the software, you will use another tool Xilinx SDK, based on Eclipse. For these labs you will work in C,
although using C++ is also possible. The compiled software will be merged with the hardware to form the complete
FPGA configuration.

17

9 Exporting the Design to SDK

The software development kit needs to know about the underlying hardware architecture. If you just built your
hardware, you can export it to SDK.

1. Select File -> Export -> Export Hardware.

2. In Export Hardware dialog box, select Include bitstream check box, shown in Figure 33. Make sure that the
Export to field is set to <Local to Project>.

Figure 33: Export Hardware Dialog Box

3. Click OK.

4. Select File -> Launch SDK. In the Launch SDK dialog box, make sure that both Exported location and
Workspace drop-down lists are set to <Local to Project>.

Figure 34: Launch SDK Dialog Box

5. Click OK. SDK launches in a separate window.

Take some time to examine the directory structure and the files residing in your project directory. You will notice a
folder ending in .sdk, which is an SDK workspace. This also contains one .hdf file, the full description of the target
hardware architecture.

note It is also possible to launch SDK without building a hardware platform, if this is already provided as a .hdf file.
Then you will need to start SDK from the menu or command line, Create Application Project and specify New...
Target Hardware. A New Hardware Project dialog box opens, where you should Browse... after the Target
Hardware Specification, namely the .hdf file mentioned above.

18

10 Create a "Peripheral Test" Application

As with most of the steps in this tutorial, there are several ways to get the same result, since the same commands can
be issued in the user interface in different places. The following shows one of the ways to create a new application.

1. In SDK, right-click mb subsystem_wrapper_hw_platform 0 in the Project Explorer and select New ->
Project, as shown in Figure 35.

Figure 35: SDK New Project Selection

2. In the New Project dialog box, select Xilinx Application Project (Figure 36).

Figure 36: SDK New Project Wizard

3. Click Next.

4. Type a name (such as peri test) for your project and choose standalone as OS platform, as shown in Figure 37.

5. Click Next.

6. Select the Peripheral Tests application template as in Figure 38, and click Finish. Note that there are other
templates you could choose, providing support for various kinds of applications. It is very common to start with
one such application (e.g. "Hello World") and develop it into the application you actually want to implement.

SDK creates a new "peri test" application (see Figure 39). Note that there are three open projects: one is the

hardware description, one is your new application, and the third is the BSP, board support package, which contains
the libraries needed to program with the IPs in your architecture. Open peri text bsp, then BSP Documentation, and
further tmrctr v4 2 to examine the documentation for the AXI Timer API. Often this documentation contains example
code in the File List. For some works with the AXI Timer, the xtmrctr polled example.c is relevant.

19

Figure 37: New Project: Application Project Wizard

Figure 38: New Project: Template Wizard

20

 Figure 39: Project Explorer with the new peri test application

11 Executing the Application on Nexys-4

Finally it is time to run the software on the hardware architecture designed earlier, which is emulated on the FPGA.
This means that the FPGA will be configured with the hardware and software you produced in this tutorial.

Make sure that you have connected the target board to the host computer (USB - PROG/UART pin), and the board
is turned on.

1. Select Xilinx Tools -> Program FPGA to open the Program FPGA dialog box.

2. In the Program FPGA dialog box, make sure to change the bootloop (does nothing / used in debugging) in
Software Configuration to point to the right executable, as shown in Figure 40. Click Program.

Figure 40: Project Explorer with the new peri test application

3. Although the system is up and running (check the LEDs), there is no way to see printouts unless we connect to
the board via a Terminal. This can be done in SDK. Select SDK Terminal tab in the lower/Console region, as
shown in Figure 41, then click on + to connect to a serial port.

21

Figure 41: SDK Terminal Tab

4. In the Connect to serial port dialog box, select the right COM port (may vary on your system) and make sure
the parameters are set up similar to Figure 42. Click OK.

Figure 42: Connect to Serial Port Dialog Box

5. Your terminal window should now receive text from the board, similar to Figure 43. Try pushing the red CPU
RESET button on the Nexys-4 board and examine both the LEDs and the terminal output.

Figure 43: Terminal Output via the Serial Connection

12 Summary

At the end of this tutorial you should be able now to:

⚫ create a simple, single MicroBlaze hardware architecture in Vivado

⚫ gather statistics about your design timing, device utilization and power use in Vivado

⚫ export the hardware architecture into SDK

⚫ create simple application using architecture in SDK

⚫ run the full system on the Nexys-4 board

Most of these skills will be used in future assignment, and can be further develop to allow you to be more efficient.

22

