
Vivado Design Suite

Tutorial

Logic Simulation

UG937 (v2019.1) June 4, 2019

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG937

Logic Simulation www.xilinx.com 2
UG937 (v2019.1) June 4, 2019

Revision History

Section Revision Summary

06/04/2019 Version 2019.1

System Verilog Feature Added new chapter.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=2

Logic Simulation www.xilinx.com 3
UG937 (v2019.1) June 4, 2019

Table of Contents

Revision History .. 2

Vivado Simulator Overview ... 5

Introduction ... 5

Tutorial Description ... 6

Locating Tutorial Design Files ... 7

Software and Hardware Requirements ... 8

Lab 1: Running the Simulator in Vivado IDE .. 9

Introduction ... 9

Step 1: Creating a New Project ... 9

Step 2: Adding IP from the IP Catalog ... 15

Step 3: Running Behavioral Simulation ... 21

Conclusion ... 23

Lab 2: Debugging the Design ... 24

Introduction .. 24

Step 1: Opening the Project ... 24

Step 2: Displaying Signal Waveforms .. 25

Step 3: Using the Analog Wave Viewer ... 27

Step 4: Working with the Waveform Window .. 29

Step 5: Changing Signal Properties ... 32

Step 6: Saving the Waveform Configuration ... 34

Step 7: Re-Simulating the Design .. 36

Step 8: Using Cursors, Markers, and Measuring Time .. 37

Step 9: Debugging with Breakpoints ... 40

Step 10: Relaunch Simulation .. 46

Conclusion ... 48

Lab 3: Running Simulation in Batch Mode ... 49

Introduction .. 49

Step 1: Preparing the Simulation .. 49

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=3

Logic Simulation www.xilinx.com 4
UG937 (v2019.1) June 4, 2019

Step 2: Building the Simulation Snapshot .. 51

Step 3: Manually Simulating the Design ... 53

Conclusion ... 54

System Verilog Feature ... 55

Introduction .. 55

Creating an Example Design ... 55

Functional Coverage ... 62

Random Constraint ... 67

Legal Notices ... 70

Please Read: Important Legal Notices .. 70

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=4

Logic Simulation www.xilinx.com 5
UG937 (v2019.1) June 4, 2019

Vivado Simulator Overview

IMPORTANT: This tutorial requires the use of the Kintex®-7 family of devices or UltraScale

devices. If you do not have this device family installed, you must update your Vivado® tools

installation. Refer to the Vivado Design Suite User Guide: Release Notes, Installation, and

Licensing (UG973) for more information on Adding Design Tools or Devices to your

installation.

Introduction
This Xilinx® Vivado® Design Suite tutorial provides designers with an in-depth introduction to the

Vivado simulator.

VIDEO: You can also learn more about the Vivado simulator by viewing the quick take

video at Vivado Logic Simulation.

TRAINING: Xilinx provides training courses that can help you learn more about the concepts

presented in this document. Use these links to explore related courses:

 Designing FPGAs Using the Vivado Design Suite 1 Training Course

 Designing FPGAs Using the Vivado Design Suite 2 Training Course

 Designing FPGAs Using the Vivado Design Suite 2 Training Course

The Vivado simulator is a Hardware Description Language (HDL) simulator that lets you perform

behavioral, functional, and timing simulations for VHDL, Verilog, and mixed-language designs. The

Vivado simulator environment includes the following key elements:

1. xvhdl and xvlog: Parsers for VHDL and Verilog files, respectively, that store the parsed files into

an HDL library on disk.

2. xelab: HDL elaborator and linker command. For a given top-level unit, xelab loads up all sub-

design units, translates the design units into executable code, and links the generated executable

code with the simulation kernel to create an executable simulation snapshot.

3. xsim: Vivado simulation command that loads a simulation snapshot to effect a batch mode

simulation, or a GUI or Tcl-based interactive simulation environment.

4. Vivado Integrated Design Environment (IDE): An interactive design-editing environment that

provides the simulator user-interface.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.htm
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=5

Logic Simulation www.xilinx.com 6
UG937 (v2019.1) June 4, 2019

Tutorial Description
This tutorial demonstrates a design flow in which you can use the Vivado simulator for performing

behavioral, functional, or timing simulation from the Vivado Integrated Design Environment (IDE).

IMPORTANT: Tutorial files are configured to run the Vivado simulator in a Windows

environment. To run elements of this tutorial under the Linux operating system, some

file modifications may be necessary.

You can run the Vivado simulator in both Project Mode (using a Vivado design project to manage

design sources and the design flow) and in Non-Project mode (managing the design more directly). For

more information about Project Mode and Non-Project Mode, refer to the Vivado Design Suite User

Guide: Design Flows Overview (UG892).

Figure 1 shows a block diagram of the tutorial design.

Figure 1: Tutorial Design

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=6

Logic Simulation www.xilinx.com 7
UG937 (v2019.1) June 4, 2019

The tutorial design consists of the following blocks:

 A sine wave generator that generates high, medium, and low frequency sine waves; plus an

amplitude sine wave (sinegen.vhd).

 DDS compilers that generate low, middle, and high frequency waves: (sine_low.vhd,

sine_mid.vhd, and sine_high.vhd).

 A Finite State Machine (FSM) to select one of the four sine waves (fsm.vhd).

 A debouncer that enables switch-selection between the raw and the debounced version of the

sine wave selector (debounce.vhd).

 A design top module that resets FSM and the sine wave generator, and then multiplexes the

sine select results to the LED output (sinegen_demo.vhd).

 A simple testbench (testbench.v) to initiate the sine wave generator design that:

o Generates a 200 MHz input clock for the design system clock, sys_clk_p.

o Generates GPIO button selections.

o Controls raw and debounced sine wave select.

Note: For more information about testbenches, see Writing Efficient Testbenches (XAPP199).

Locating Tutorial Design Files
There are separate project files and sources for each of the labs in this tutorial. You can find these at the

link provided below or under Support > Documentation > Development Tools (Product Type) >

Hardware Development (Product Category) > Vivado Design Suite – HLx Editions (Product) >

Tutorials (Doc Type) on the Xilinx.com website.

1. Download the reference design files.

2. Extract the zip file contents into any write-accessible location.

This tutorial refers to the extracted file contents of ug937-design-files directory as

<Extract_Dir>.

RECOMMENDED: You modify the tutorial design data while working through this tutorial.

Use a new copy of the design files each time you start this tutorial.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp199.pdf
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=2fc3ff5f-8023-406a-9e6f-bdbf1a6b8dea;d=ug937-design-files.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=7

Logic Simulation www.xilinx.com 8
UG937 (v2019.1) June 4, 2019

The following table describes the contents of the ug937-design-files.zip file.

Directories/Files Description

/completed Contains the completed files, and a Vivado 2019.x project of the

tutorial design for reference.

(x denotes the latest version of Vivado 2019 IDE)

/scripts Contains the scripts you run during the tutorial.

/sim Contains the testbench.v file.

/sources Contains the HDL files necessary for the functional simulation.

readme.txt readme.txt is a readme file about the contents and version history

of this tutorial design.

Software and Hardware Requirements
This tutorial requires that the 2019.1 Vivado Design Suite software release is installed. The following

partial list describes the operating systems that the Vivado Design Suite supports on x86 and x86-64

processor architectures:

Microsoft Windows Support:

 Windows 8.1 Professional (32-bit and 64-bit), English/Japanese

 Windows 7 and 7 SP1 Professional (32-bit and 64-bit), English/Japanese

Linux Support:

 Red Hat Enterprise Workstation 6.4 and 6.5 (32-bit and 64-bit)

 SUSE Linux Enterprise 11 (32-bit and 64-bit)

 Cent OS 6.4 and 6.5 (64-bit)

Refer to the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for a

complete list and description of the system and software requirements.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;t=vivado+release+notes
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=8

Logic Simulation www.xilinx.com 9
UG937 (v2019.1) June 4, 2019

Lab 1: Running the Simulator in Vivado IDE

Introduction
In this lab, you create a new Vivado Design Suite project, add HDL design sources, add IP from the

Xilinx IP catalog, and generate IP outputs needed for simulation. Then you run a behavioral simulation

on an elaborated RTL design.

Step 1: Creating a New Project
The Vivado Integrated Design Environment (IDE) (Figure 2) lets you launch simulation from within

design projects, automatically generating the necessary simulation commands and files.

Figure 2: Vivado IDE - Getting Started Page

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=9

Logic Simulation www.xilinx.com 10
UG937 (v2019.1) June 4, 2019

Create a new project for managing source files, add IP to the design, and run behavioral simulation.

1. On Windows, launch the Vivado IDE:

Start > All Programs > Xilinx Design Tools > Vivado 2019.x > Vivado 2019.x

 (x denotes the latest version of Vivado 2019 IDE)

Note: Your Vivado Design Suite installation might be called something other than Xilinx Design

Tools on the Start menu.

2. In the Vivado IDE Getting started page, click Create Project.

3. In the New project dialog box, click Next and enter a project name: project_xsim.

4. For the Project Location, browse to the folder containing the extracted tutorial data,

<Extract_Dir>. Make sure to check the Create project subdirectory option and click Next.

(Figure 3).

Figure 3: Create Project

Note: Create project subdirectory option is preselected.

5. In the Project Type dialog box, select RTL Project and click Next.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=10

Logic Simulation www.xilinx.com 11
UG937 (v2019.1) June 4, 2019

Figure 4: Selecting RTL Project

6. In the Add Source dialog box, click Add Directories and add the extracted tutorial design data:

 <Extract_Dir>/sources

 <Extract_Dir>/sim

Note: You can press the Ctrl key to click and select multiple files or directories.

7. Set the Target Language to Verilog to indicate the netlist language for synthesis.

8. Set the Simulator Language to Mixed as seen in Figure 5.

The Simulator Language indicates which languages the logic simulator supports or requires. Vivado

Design Site ensures the availability of simulation models of any IP cores in the design by using the

available synthesis files to generate the required language-specific structural simulation model when

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=11

Logic Simulation www.xilinx.com 12
UG937 (v2019.1) June 4, 2019

generating output targets. For more information on working with IP cores and the Xilinx IP Catalog,

refer to the Vivado Design Suite User Guide: Design with IP (UG896). You can also work through the

Vivado Design Suite Tutorial: Designing with IP (UG939).

9. Click Next.

10. Click Next to bypass the Add Constraints dialog box.

Figure 5: Add Sources

In the Default Part dialog box (Figure 6), select Boards, and then select either Kintex-7 KC705
Evaluation Platform for 7-Series or Kintex-UltraScale KCU105 Evaluation Platform for UltraScale
devices and click Next.

Note: Add sources from subdirectories option is preselected.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug939-vivado-designing-with-ip-tutorial.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=12

Logic Simulation www.xilinx.com 13
UG937 (v2019.1) June 4, 2019

Figure 6: Specify Default Part or Board

11. Review the New Project Summary dialog box.

12. Click Finish to create the project.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=13

Logic Simulation www.xilinx.com 14
UG937 (v2019.1) June 4, 2019

Vivado opens the new project in the Vivado IDE, using the default view layout (Figure 7).

Figure 7: Vivado IDE - Default Layout

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=14

Logic Simulation www.xilinx.com 15
UG937 (v2019.1) June 4, 2019

Step 2: Adding IP from the IP Catalog
The Sources window displays the source files that you have added during project creation. The

Hierarchy tab displays the hierarchical view of the source files.

1. Click the icon in the Sources window to expand the folders as shown in Figure 8. Expand all

button can be used to view all the files at all levels of hierarchy.

Figure 8: Sources window

Notice that the Sine wave generator (sinegen.vhd) references cells that are not found in the current

design sources. In the Sources window, the missing design sources are marked by the missing source

icon .

 Note: The missing source icon is used to view only the missing sources. This is useful in viewing the

 missing sources in larger designs.

Now, add the sine_high, sine_mid, and sine_low modules to the project from the Xilinx IP

Catalog.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=15

Logic Simulation www.xilinx.com 16
UG937 (v2019.1) June 4, 2019

Adding Sine High

1. In the Flow Navigator, select the IP Catalog button.

The IP Catalog opens in the graphical windows area. For more information on the specifics of

the Vivado IDE, refer to the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

2. In the search field of the IP Catalog, type DDS.

The Vivado IDE highlights the DDS Compilers in the IP catalog.

3. Under any category, double-click the DDS Compiler.

The Customize IP wizard opens (Figure 9).

Figure 9: Customize IP - DDS Compiler

4. In the IP Symbol on the left, ensure that Show disabled ports is unchecked.

5. Specify the following on the Configuration tab:

o Component Name: type sine_high

o Configuration Options: select SIN COS LUT only

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=16

Logic Simulation www.xilinx.com 17
UG937 (v2019.1) June 4, 2019

o Noise Shaping: select None

o Under Hardware Parameters, set Phase Width to 16 and Output Width to 20

6. On the Implementation tab, set Output Selection to Sine

7. On the Detailed Implementation tab, set Control Signals to ARESETn (active-Low)

8. On the Summary tab, review the settings and click OK (Figure 10).

9. In the Create Directory Dialog Box, Click OK.

Figure 10: Sine High Summary

When the sine_high IP core is added to the design, the output products required to support the IP in

the design must be generated. The Generate Output Products dialog box displays, as shown in Figure

11.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=17

Logic Simulation www.xilinx.com 18
UG937 (v2019.1) June 4, 2019

Figure 11: Generate Output Products

The output products allow the IP to be synthesized, simulated, and implemented as part of the design.

For more information on working with IP cores and the Xilinx IP Catalog, refer to the Vivado Design

Suite User Guide: Design with IP (UG896). You can also work through the Vivado Design Suite Tutorial:

Designing with IP (UG939).

Click Generate to generate the default output products for sine_high.

Adding Sine Mid

1. In the IP catalog, double-click the DDS Compiler IP a second time.

2. Specify the following on the Configuration tab:

o Component Name: type sine_mid

o Configuration Options: select SIN COS LUT only

o Noise Shaping: select None

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug939-vivado-designing-with-ip-tutorial.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=18

Logic Simulation www.xilinx.com 19
UG937 (v2019.1) June 4, 2019

o Under Hardware Parameters, set the Phase Width to 8, and the Output Width to 18

3. On the Implementation tab, set the Output Selection to Sine

4. On the Detailed Implementation tab, set Control Signals to ARESETn (active-Low)

5. Select the Summary tab, review the settings and click OK (Figure 12).

Figure 12: Sine Mid Summary

When the sine_mid IP core is added to the design, the Generate Output Products dialog box

displays to generate the output products required to support the IP in the design.

6. Click Generate to generate the default output products for sine_mid. A dialog box opens saying

that the Out of context module run was launched for generating output products. Click OK.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=19

Logic Simulation www.xilinx.com 20
UG937 (v2019.1) June 4, 2019

Adding Sine Low

1. In the IP catalog, double-click the DDS Compiler IP for the third time.

2. Specify the following on the Configuration tab:

o Component Name: type sine_low

o Configuration Options: select SIN COS LUT only

o Noise Shaping: select None

o Under Hardware Parameters, set the Phase Width to 6 and the Output Width to 16

3. On the Implementation tab, set the Output Selection to Sine.

4. On the Detailed Implementation tab, set Control Signals to ARESETn (active-Low)

5. Select the Summary tab, review the settings as seen in Figure 13, and click OK.

Figure 13: Sine Low Summary

When the sine_low IP core is added to the design, the Generate Output Products dialog box

displays to generate the output products required to support the IP in the design.

6. Click Generate to generate the default output products for sine_low. A dialog box opens saying

that the Out of context module run was launched for generating output products. Click OK.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=20

Logic Simulation www.xilinx.com 21
UG937 (v2019.1) June 4, 2019

Step 3: Running Behavioral Simulation
After you have created a Vivado project for the tutorial design, you set up and launch Vivado simulator

to run behavioral simulation. Set the behavioral simulation properties in Vivado tools:

1. In the Flow Navigator, Right-click Simulation and then click Simulation Settings. Alternatively, click

Settings in the Flow Navigator under Project Manager to open the Settings window. Select

Simulation from the Settings window. The following defaults are automatically set:

o Simulation set: select sim_1

o Simulation top-module name: set testbench

2. In the Elaboration tab (Figure 14), ensure that the debug level is set to typical, which is the default

value.

Figure 14: Simulation Settings: Elaboration

3. In the Simulation tab, observe that the Simulation Run Time is 1000ns.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=21

Logic Simulation www.xilinx.com 22
UG937 (v2019.1) June 4, 2019

4. Click OK.

With the simulation settings properly configured, you can launch Vivado simulator to perform a

behavioral simulation of the design.

5. In the Flow Navigator, click Run Simulation >Run Behavioral Simulation.

Functional and timing simulations are available post-synthesis and post-implementation. Those

simulations are outside the scope of this tutorial.

When you launch the Run Behavioral Simulation command, the Vivado tool runs xvlog and

xvhdl to analyze the design and xelab in the background to elaborate and compile the design

into a simulation snapshot, which the Vivado simulator can run. When that process is complete,

the Vivado tool launches xsim to run the simulation.

In the Vivado IDE, the simulator GUI opens after successfully parsing and compiling the design

(Figure 15). By default, the top-level HDL objects display in the Waveform window.

Figure 15: Vivado Simulation GUI

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=22

Logic Simulation www.xilinx.com 23
UG937 (v2019.1) June 4, 2019

Conclusion
In this lab, you have created a new Vivado Design Suite project, added HDL design sources, added IP

from the Xilinx IP catalog and generated IP outputs needed for simulation, and then run behavioral

simulation on the elaborated RTL design.

This concludes Lab #1. You can continue Lab #2 at this time by starting at Step 2: Displaying Signal

Waveforms.

You can also close the simulation, project, and the Vivado IDE to start Lab #2 at a later time.

1. Click File > Close Simulation to close the open simulation.

2. Select OK if prompted to confirm closing the simulation.

3. Click File > Close Project to close the open project.

4. Click File > Exit to exit the Vivado tool.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=23

Logic Simulation www.xilinx.com 24
UG937 (v2019.1) June 4, 2019

Lab 2: Debugging the Design

Introduction
The Vivado simulator GUI contains the Waveform window, and Object and Scope Windows. It provides

a set of debugging capabilities to quickly examine, debug, and fix design problems. See the Vivado

Design Suite User Guide: Logic Simulation (UG900) for more information about the GUI components.

In this lab, you:

 Enable debug capabilities

 Examine a design bug

 Use debug features to find the root cause of the bug

 Make changes to the code

 Re-compile and re-launch the simulation

Step 1: Opening the Project
This lab continues from the end of Lab #1 in this tutorial. You must complete Lab #1 prior to beginning

Lab #2. If you closed the Vivado IDE, or the tutorial project, or the simulation at the end of Lab #1, you

must reopen them.

Start by loading the Vivado Integrated Design Environment (IDE).

Start > All Programs > Xilinx Design Tools > Vivado 2019.x > Vivado 2019.x

Note: Your Vivado Design Suite installation might be called something other than Xilinx Design

Tools on the Start menu.

Note: As an alternative, click the Vivado 2019.x Desktop icon to start the Vivado IDE.

The Vivado IDE opens. Now, open the project from Lab #1, and run behavioral simulation.

1. From the main menu, click File > Project > Open Recent and select project_xsim, which you

saved in Lab #1.

2. After the project has opened, from the Flow Navigator click Run Simulation > Run Behavioral

Simulation.

The Vivado simulator compiles your design and loads the simulation snapshot.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=24

Logic Simulation www.xilinx.com 25
UG937 (v2019.1) June 4, 2019

Step 2: Displaying Signal Waveforms
In this section, you examine features of the Vivado simulator GUI that help you monitor signals and

analyze simulation results, including:

 Running and restarting the simulation to review the design functionality, using signals in the

Waveform window and messages from the testbench shown in the Tcl console.

 Adding signals from the testbench and other design units to the Waveform window so you can

monitor their status.

 Adding groups and dividers to better identify signals in the Waveform window.

 Changing signal and wave properties to better interpret and review the signals in the Waveform

window.

 Using markers and cursors to highlight key events in the simulation and to perform zoom and

time measurement features.

 Using multiple waveform configurations.

Add and Monitor Signals

The focus of the tutorial design is to generate sine waves with different frequencies. To observe the

function of the circuit, you monitor a few signals from the design. Before running simulation for a

specified time, you can add signals to the wave window to observe the signals as they transition to

different states over the course of the simulation.

By default, the Vivado simulator adds simulation objects from the testbench to the Waveform window.

In the case of this tutorial, the following testbench signals load automatically:

 Differential clock signals (sys_clk_p and sys_clk_n). This is a 200 MHz clock generated by

the testbench and is the input clock for the complete design.

 Reset signal (reset). Provides control to reset the circuit.

 GPIO buttons (gpio_buttons[1:0]). Provides control signals to select different frequency

sine waves.

 GPIO switch (gpio_switch). Provides a control switch to enable or disable debouncer logic.

 LEDs (leds_n[3:0]). A placeholder bus to display the results of the simulation.

You add some new signals to this list to monitor those signals as well.

If necessary, in the Scopes window, click the sign to expand the testbench. (It might be expanded

by default.)

An HDL scope, or scope, is defined by a declarative region in the HDL code, such as a module,

function, task, process, or named blocks in Verilog. VHDL scopes include entity/architecture

definitions, blocks, functions, procedures, and processes.

3. In the Scopes window, click to select the dut object.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=25

Logic Simulation www.xilinx.com 26
UG937 (v2019.1) June 4, 2019

The current scope of the simulation changes from the whole testbench to the selected object.

The Objects window updates with all the signals and constants of the selected scope, as shown

in Figure 16.

4. From the Objects window, select signals sine[19:0] and sineSel[1:0] and add them into

Wave Configuration window using one of the following methods:

o Drag and drop the selected signals into the Waveform window.

o Right-click on the signal to open the popup menu, and select Add to Wave Window.

Note: You can select multiple signals by holding down the CTRL key during selection.

Figure 16: Add signals to Wave Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=26

Logic Simulation www.xilinx.com 27
UG937 (v2019.1) June 4, 2019

Step 3: Using the Analog Wave Viewer
The sine[19:0] signals you are monitoring are analog signals, which you can view better in Analog wave

mode. You can choose to display a given signal as Digital or Analog in the Waveform window.

1. In the Waveform window, select the sine[19:0] signal.

2. Right click to open the popup menu, and select Waveform Style > Analog, as shown in Figure 17.

3. Right click to open the popup menu again, and select Radix > Signed Decimal as shown in Figure

18.

Figure 17: Enable Analog Waveform Style

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=27

Logic Simulation www.xilinx.com 28
UG937 (v2019.1) June 4, 2019

Figure 18: Enable Radix

Logging Waveforms for Debugging

The Waveform window lets you review the state of multiple signals as the simulation runs. However,

due to its limited size, the number of signals you can effectively monitor in the Waveform window is

limited. To identify design failures during debugging, you might need to trace more signals and objects

than can be practically displayed in the Waveform window. You can log the waveforms for signals that

are not displayed in the Waveform window, by writing them to the simulation waveform database

(WDB). After simulation, you can review the transitions on all signals captured in the waveform database

file.

In the Scope window, right-click on dut under testbench. Click Log to Wave Database from the

options list. Select Objects in Scope option. The specified signals are written to a waveform database.

Using TCL Command

Enable logging of the waveform for the specified HDL objects by entering the following command in

the Tcl console:

log_wave [get_objects /testbench/dut/*] [get_objects /testbench/dut/U_SINEGEN/*]

Note: See the Vivado Design Suite Tcl Command Reference Guide (UG835) for more information on

the log_wave command.

This command enables signal dumping for the specified HDL objects, /testbench/dut/* and

/testbench/dut/U_SINEGEN/*.

Note: * Symbol specifies all the HDL objects in a scope.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=28

Logic Simulation www.xilinx.com 29
UG937 (v2019.1) June 4, 2019

The log_wave command writes the specified signals to a waveform database, which is written to the

simulation folder of the current project:

<project_name>/<project_name>.sim/sim_1/behave

Step 4: Working with the Waveform Window
Now that you have configured the simulator to display and log signals of interest into the waveform

database, you are ready to run the simulator again.

1. Run the simulation by clicking the Run All button .

Observe the sine signal output in the waveform. The Wave window can be undocked from Main

window layout to view it as standalone.

2. Click the Float button in the title bar of the Waveform Configuration window.

3. Display the whole time spectrum in the Waveform window by clicking the Zoom Fit button

Notice that the low frequency sine output is incorrect. You can view the waveform in detail by

zooming into the Waveform window. When you zoom into the waveform, you can use the

horizontal and vertical scroll bars to pan down the full waveform.

Figure 19: Design Bug - Wave View

As seen in Figure 19, when the value of sineSel is 0, which indicates a low frequency sine selection, the

analog sine[19:0] output is not a proper sine wave, indicating a problem in the design or the

testbench.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=29

Logic Simulation www.xilinx.com 30
UG937 (v2019.1) June 4, 2019

Grouping Signals

Next, you add signals from other design units to better analyze the functionality of the whole design.

When you add signals to the Waveform window, the limited size of the window makes it difficult to

display all signals at the same time. Reviewing all signals would require the use of the vertical scroll bar,

making the review process difficult.

You can group related signals together to make viewing them easier. With a group, you can display or

hide associated signals to make the Waveform window less cluttered, and easier to understand.

1. In the Waveform window, select all signals in the testbench unit: sys_clk_p, sys_clk_n, reset,

gpio_buttons, gpio_switch, and leds_n.

Note: Press and hold the Ctrl key, or Shift key, to select multiple signals.

2. With the signals selected right-click to open the popup menu and select New Group. Rename it as

TB Signals.

Vivado simulator creates a collapsed group in the waveform configuration window. To expand

the group, click to the left of the group name

3. Create another signal group called DUT Signals to group signals sine[19:0] and
sine_sel[1:0].

You can add or remove signals from a group as needed. Cut and paste signals from the list of

signals in the Waveform window, or drag and drop a signal from one group into another.

You can also drag and drop a signal from the Objects window into the Waveform window, or

into a group.

You can ungroup all signals, thereby eliminating the group. Select a group, right-click to open

the popup menu and select Ungroup.

To better visualize which signals belong to which design units, add dividers to separate the

signals by design unit.

Adding Dividers

Dividers let you create visual breaks between signals or groups of signals to more easily identify related

objects.

1. In the Waveform window, right-click to open the popup menu and select New Divider. The Name

dialog box opens to let you name the divider you are adding to the Waveform window.

2. Add two dividers named:

o Testbench

o SineGen

3. Move the SineGen divider above the DUT Signals group.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=30

Logic Simulation www.xilinx.com 31
UG937 (v2019.1) June 4, 2019

TIP: You can change divider names at any time by highlighting the divider name and

selecting the Rename command from the popup menu, or change the color with

Divider Color.

Adding Signals from Sub-modules

You can also add signals from different levels of the design hierarchy to study the interactions between

these modules and the testbench. The easiest way to add signals from a sub-module is to filter objects

and then select the signals to add to the Waveform view.

Add signals from the instantiated sine_gen_demo module (DUT) and the sinegen module

(U_SINEGEN).

1. In the Scopes window, select and expand the Testbench, then select and expand DUT.

Simulation objects associated with the currently selected scope display in the Objects window.

By default, all types of simulation objects display in the Objects window. However, you can limit

the types of objects displayed by selecting the object filters at the top of the Objects window.

Figure 20 shows the Objects window with the Input and Output port objects enabled, and the

other object types are disabled. Move the cursor to hover over a button to see the tooltip for

the object type.

Figure 20: Object Filters

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=31

Logic Simulation www.xilinx.com 32
UG937 (v2019.1) June 4, 2019

2. Use the Objects window toolbar to enable and disable the different object types.

The types of objects that can be filtered in the Objects window include Input, Output, Inout

ports, Internal Signals, Constants, and Variables.

3. In the Scopes window, select the U_SINEGEN design unit.

4. In the Waveform window, right-click in the empty space below the signal names, and use the New

Group command to create three new groups called Inputs, Outputs, and Internal Signals.

TIP: If you create the group on top of, or containing, any of the current objects in the

Waveform window, simply drag and drop the objects to separate them as needed.

5. In the Objects window, select the Input filter to display the Input objects.

6. Select the Input objects in the Objects window, and drag and drop them onto the Input group you

created in the Waveform window.

Repeat steps 5 and 6 above to filter the Output objects and drag them onto the Output group, and

filter the Internal Signals and drag them onto the Internal Signals group, as shown in Figure 21.

Figure 21: Configuring the Wave Window

Step 5: Changing Signal Properties
You can also change the properties of some of the signals shown in the Waveform window to better

visualize the simulation results.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=32

Logic Simulation www.xilinx.com 33
UG937 (v2019.1) June 4, 2019

Viewing Hierarchical Signal Names

By default, the Vivado simulator adds signals to the waveform configuration using a short name with

the hierarchy reference removed. For some signals, it is important to know to which module they

belong.

1. In the Waveform window, hold Ctrl and click to select the sine[19:0] and sineSel[1:0]

signals listed in the DUT signals group, under the SineGen divider.

2. Hold Ctrl, and click to select the sine[19:0] signals listed in the Outputs group, under the

SineGen divider.

3. Right-click in the Waveform window to open the popup menu, and select the Name > Long

command.

The displayed name changes to include the hierarchical path of the signal. You can now see that

the sine[19:0] signals under the DUT Signals group refers to different objects in the design

hierarchy than the sine[19:0] signals listed under the Outputs group.

See Figure 22.

Figure 22: Long Signal Names

Viewing Signal Values

You can better understand some signal values if they display in a different radix format than the default,

for instance, binary values instead of hexadecimal values. The default radix is Hexadecimal unless you

override the radix for a specific object.

Supported radix values are Binary, Hexadecimal, Octal, ASCII, Signed and Unsigned decimal. You can set

any of the above values as Default using Default Radix option.

1. In the Waveform window, select the following signals:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=33

Logic Simulation www.xilinx.com 34
UG937 (v2019.1) June 4, 2019

s_axis_phase_tdata_sine_high, s_axis_phase_tdata_sine_mid and s_axis_phase_tdata_sine_low.

2. Right-click to open the popup menu, and select Radix > Binary.

The values on these signals now display using the specified radix.

Step 6: Saving the Waveform Configuration
You can customize the look and feel of the Waveform window, and then save the Waveform

configuration to reuse in future simulation runs. The Waveform configuration file defines the displayed

signals, and the display characteristics of those signals.

1. In the Waveform window, click the Settings button on the title bar menu.

The Waveform Options dialog box opens to the General tab.

2. Ensure the Default Radix is set to Hexadecimal.

This defines the default number format for all signals in the Waveform window. The radix can

also be set for individual objects in the Waveform window to override the default.

3. Select the Draw Waveform Shadow, as shown in Figure 23, to enable or disable the shading under

the signal waveform.

By default, a waveform is shaded under the high transitions to make it easier to recognize the

transitions and states in the Waveform window.

You can also enable or disable signal indices, so that each signal or group of signals is identified

with an index number in the Waveform window.

4. Check or uncheck the Show signal indices check box to enable or disable the signal list numbering.

Figure 23: Waveform Options - General View

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=34

Logic Simulation www.xilinx.com 35
UG937 (v2019.1) June 4, 2019

5. Check or uncheck the Show grid lines check box to enable or disable the grid lines in waveform

window.

6. Check the Snap to Transition check box to snap the cursor to transition edges.

7. In the Waveform Options dialog box, select the Colors view.

Examine the Waveform Color Options dialog box. You can configure the coloring for elements

of the Waveform window to customize the look and feel. You can specify custom colors to

display waveforms of certain values, so you can quickly identify signals in an unknown state, or

an uninitialized state.

The Waveform window configures with your preferences. You can save the current waveform

configuration so it is available for use in future Vivado simulation sessions.

By default, the Vivado simulator saves the current waveform configuration setting as

testbench_behav.wcfg.

8. In the Waveform window sidebar menu, select the Save Wave Configuration button .

9. Save the Wave Configuration into the project folder with the filename tutorial_1.wcfg.

10. Click Yes. The file is added to the project simulation fileset, sim_1, for archive purposes.

TIP: You can also load a previously saved waveform configuration file using the File >

Simulation Waveform > Open Configuration command.

Working with Multiple Waveform Configurations

You can also have multiple Waveform windows, and waveform configuration files open at one time. This

is useful when the number of signals you want to display exceeds the ability to display them in a single

window. Depending on the resolution of the screen, a single Waveform window might not display all

the signals of interest at the same time. You can open multiple Waveform windows, each with their own

set of signals and signal properties, and copy and paste between them.

1. To add a new Waveform window, select File > Simulation Waveform > New Configuration.

An untitled Waveform window opens with a default name. You can add signals, define groups,

add dividers, set properties and colors that are unique to this Waveform window.

2. Select signal groups in the first Waveform window by pressing and holding the Ctrl key, and

selecting the following groups: Inputs, Outputs, and Internal Signals.

3. Right-click to open the popup menu, and select Copy, or use the shortcut Ctrl+C on the selected

groups to copy them from the current Waveform window.

4. Select the new Waveform window to make it active.

5. Right-click in the Waveform window and select Paste, or use the shortcut Ctrl+V to paste the signal

groups into the prior Waveform window.

6. Select File > Simulation Waveform > Save Configuration or click the Save Wave Configuration

button, and save the waveform configuration to a file called tutorial_2.wcfg.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=35

Logic Simulation www.xilinx.com 36
UG937 (v2019.1) June 4, 2019

7. When prompted to add the waveform configuration to the project, select No.

8. Click the icon to close the new Waveform window.

Step 7: Re-Simulating the Design
With the various signals, signal groups, dividers, and attributes you have added to the Waveform

window, you are now ready to simulate the design again.

1. Click the Restart button to reset the circuit to its initial state.

2. Click the Run All button .

The simulation runs for about 7005 ns. If you do not restart the simulator prior to executing the

Run All command, the simulator runs continuously until interrupted.

3. After the simulation is complete, click the Zoom Fit button to see the whole simulation

timeline in the Waveform window. Figure 24 shows the current simulation results.

Figure 24: Simulation Waveform at Time 7005 ns

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=36

Logic Simulation www.xilinx.com 37
UG937 (v2019.1) June 4, 2019

Step 8: Using Cursors, Markers, and Measuring Time
The Finite State Machine (U_FSM) module used in the top-level of the design generates three different

sine-wave select signals for specific outputs of the SineGen block. You can identify these different

wave selections better using Markers to highlight them.

1. In the Waveform window select the /testbench/dut/sineSel[1:0] signal, as shown in Figure

25.

2. In the waveform sidebar menu, click the Go to Time 0 button .

The current marker moves to the start of the simulation run.

3. Enable the Snap to Transition check box in the General tab of settings window to snap the cursor

to transition edges.

4. From the waveform toolbar menu, click the Next Transition button .

The current marker moves to the first value change of the selected sineSel[1:0] signal, at

3.5225 microseconds.

5. Click the Add Marker button .

6. Search for all transitions on the sineSel signal, and add markers at each one.

With markers identifying the transitions on sineSel, the Waveform window should look similar

to Figure 25. As previously observed, the low frequency signals are incorrect when the sinSel

signal value is 0.

You can also use the main Waveform window cursor to navigate to different simulation times, or

locate value changes. In the next steps, you use this cursor to zoom into the Waveform window

when the sineSel is 0 to review the status of the output signal, sine[19:0], and identify

where the incorrect behavior initiates. You also use the cursor to measure the period of low

frequency wave control.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=37

Logic Simulation www.xilinx.com 38
UG937 (v2019.1) June 4, 2019

Figure 25: Using Markers

TIP: By default, the Waveform window displays the time unit in microseconds. However,

you can use whichever measurement you prefer while running or changing current

simulation time, and the Waveform window adjusts accordingly.

7. In the Waveform window, click the Go to Time 0 button, then click the Zoom in button

repeatedly to zoom into the beginning of the simulation run.

8. Continue to zoom in the Waveform window as needed, until you can see the reset signal asserted

low, and you can see the waveform of the clock signals, sys_clk_p and sys_clk_n, as seen in

Figure 26.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=38

Logic Simulation www.xilinx.com 39
UG937 (v2019.1) June 4, 2019

Figure 26: Viewing Reset and Clock Signals

The Waveform window zooms in or out around the area centered on the cursor.

9. Place the main Waveform window cursor on the area by clicking at a specific time or point in the

waveform.

You can also click on the main cursor, and drag it to the desired time.

10. Because 0 is the initial or default FSM output, move the cursor to the first posedge of sys_clk_p

after reset is asserted low, at time 102.5 ns, as seen in Figure 27.

You can use the Waveform window to measure time between two points on the timeline.

11. Place a marker at the time of interest, 102.5 ns, by clicking the Add Marker button .

12. Click to select the marker.

The Floating Ruler option that is available in the General tab of waveform Settings displays a

ruler at the bottom of the Waveform window useful for measuring time between two points. Use

the floating ruler to measure the sineSel control signal period, and the corresponding

output_sine[19:0] values during this time frame.

When you select the marker, a floating ruler opens at the bottom of the Waveform window, with

time 0 on the ruler positioned at the selected marker. As you move the cursor along the

timeline, the ruler measures the time difference between the cursor and the marker.

TIP: Enable the Floating Ruler checkbox from the General tab of Waveform Settings, if the

ruler does not appear when you select the marker.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=39

Logic Simulation www.xilinx.com 40
UG937 (v2019.1) June 4, 2019

Figure 27: Measuring Time in the Waveform

You can move the cursor along the timeline in a number of ways. You can scroll the horizontal

scroll bar at the bottom of the Waveform window. You can zoom out, or zoom fit to view more

of the time line, reposition the cursor as needed, and then zoom in for greater detail.

13. Select sineSel from the list of signals in the Waveform window and use the Next Transition

command to move to the specific transition of interest.

As shown in Figure 27, the ruler measures a time period of 3.420 ns as the period that FSM

selected the low frequency output.

Step 9: Debugging with Breakpoints
You have examined the design using cursors, markers, and multiple Waveform windows. Now you use

Vivado simulator debugging features, such as breakpoints, and line stepping, to debug the design and

identify the cause of the incorrect output.

1. First, open the tutorial design testbench to learn how the simulator generates each design input.

2. Open the testbench.v file by double-clicking the file in the Sources window, if it is not already

open.

The source file opens in the Vivado IDE Text Editor, as shown in Figure 28.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=40

Logic Simulation www.xilinx.com 41
UG937 (v2019.1) June 4, 2019

Figure 28: Integrated Text Editor

Note: You can also use File > Text Editor > Open File from the main menu, or Open File from the

popup menu in the Sources window. You can also select an appropriate design object in the Scopes

window or Objects window, right-click and select Go to Source Code.

Using Breakpoints

A breakpoint is a user-determined stopping point in the source code used for debugging the design.

When simulating a design with set breakpoints, simulation of the design stops at each breakpoint to

verify the design behavior. After the simulation stops, an indicator shows in the text editor next to the

line in the source file where the breakpoint was set, so you can compare the Wave window results with

a particular event in the HDL source.

You use breakpoints to debug the error with the low frequency signal output that you previously

observed. The erroneous sine[19:0] output is driven from the sineGen VHDL block. Start your

debugging with this block.

1. Select the U_SINEGEN scope in the Scopes window to list the objects of that scope in the Objects

window.

2. In the Objects window, right-click sine[19:0] and use Go to Source Code to open the

sinegen.vhd source file in the Text Editor.

TIP: If you do not see the sine[19:0] signal in the Objects window, make sure that

the filters at the top of the Objects window are set properly to include Output objects.

Looking through the HDL code, the clk, reset, and sel inputs are correct as expected. Set

your first breakpoint after the reset asserts low at line 137.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=41

Logic Simulation www.xilinx.com 42
UG937 (v2019.1) June 4, 2019

3. Scroll to line 137 in the file.

Add a breakpoint at line 137 in sinegen.vhd. Note that the breakpoint can be set only on the

executable lines. Vivado simulator marks the executable lines with an empty red circle , on the

left hand margin of the Text Editor, beside the line numbers.

Setting a breakpoint causes the simulator to stop at that point, every time the simulator

processes that code, or every time the counter is incremented by one.

4. Click the red circle in the left margin, to set a breakpoint, as shown in Figure 29.

Observe that the empty circle becomes a red dot to indicate that a breakpoint is set on this

line. Clicking on the red dot removes the breakpoint and reverts it to the empty circle .

Figure 29: Setting a Breakpoint

Note: To delete all breakpoints in the file, right-click on one of the breakpoints and select Delete All

Breakpoints.

Debugging in the Vivado simulator, with breakpoints and line stepping, works best when you

can view the Tcl Console, the Waveform window, and the HDL source file at the same time, as

shown in Figure 30.

5. Resize the windows, and use the window Float command or the New Vertical Group command to

arrange the various windows so that you can see them all.

6. Click the Restart button to restart the simulation from time 0.

7. Run the simulation by clicking the Run All button .

The simulation runs to time 102.5 ns, or near the start of first counting, and stops at the

breakpoint at line 137. The focus within the Vivado IDE changes to the Text Editor, where it

shows the breakpoint indicator and highlights the line.

A message also displays in the Tcl console to indicate that the simulator has stopped at a

specific time, displayed in picoseconds, indicating the line of source code last executed by the

simulator.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=42

Logic Simulation www.xilinx.com 43
UG937 (v2019.1) June 4, 2019

Figure 30: Arrange Windows for Debugging

TIP: When you have arranged windows to perform a specific task, such as simulation

debug in this case, you can save the view layout to reuse it when needed. Use the

Layout > Save Layout As command from the main menu to save view layouts. See the

Vivado Design Suite User Guide: Using the Vivado IDE (UG893) for more information on

arranging windows and using view layouts.

8. Continue the simulation by clicking the Run All button .

The simulation stops again at the breakpoint. Take a moment to examine the values in the

Waveform window. Notice that the sine[19:0] signals in the Outputs group are uninitialized,

as are the sine_l[15:0] signals in the Internal signals group.

9. In the Text Editor, add another breakpoint at line 144 of the sinegen.vhd source file.

This line of code runs when the value of sel is 0. This code assigns, with bit extension, the low

frequency signal, sine_l, to the output, sine.

10. In the Waveform window, select sine_l[15:0] in the Internal Signals group, and holding Ctrl,

select sine[19:0] in the Outputs group.

These selected signals are highlighted in the Waveform window, making them easier for you to

monitor.

11. Run the simulation by clicking the Run All button .

Once again, the simulation stops at the breakpoint, this time at line 144.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=43

Logic Simulation www.xilinx.com 44
UG937 (v2019.1) June 4, 2019

Stepping Through Source Code

Another useful Vivado simulator debug tool is the Line Stepping feature. With line stepping, you can run

the simulator one-simulation unit (line, process, task) at a time. This is helpful if you are interested in

learning how each line of your source code affects the results in simulation.

Step through the source code line-by-line and examine how the low frequency wave is selected, and

whether the DDS compiler output is correct.

1. On the Vivado simulator toolbar menu, click the Step button .

The simulation steps forward to the next executable line, in this case in another source file. The

fsm.vdh file is opened in the Text Editor. You may need to relocate the Text Editor to let you

see all the windows as previously arranged.

Note: You can also type the step command at the Tcl prompt.

2. Continue to Step through the design, until the code returns to line 144 of sinegen.vhd.

You have stepped through one complete cycle of the circuit. Notice in the Waveform window

that while sel is 0, signal sine_l is assigned as a low frequency sine wave to the output sine.

Also, notice that sine_l remains uninitialized.

3. For debug purposes, initialize the value of sine_l by entering the following add_force command

in the Tcl console:

add_force /testbench/dut/U_SINEGEN/sine_l 0110011011001010

This command forces the value of sine_l into a specific known condition, and can provide a

repeating set of values to exercise the signal more vigorously, if needed. Refer to the Vivado

Design Suite User Guide: Logic Simulation (UG900) for more information on using add_force.

4. Continue the simulation by clicking the Run All button a few more times.

In the Waveform window, notice that the value of sine_l[15:0] is now set to the value

specified by the add_force command, and this value is assigned to the output signal

sine[19:0] since the value of sel is still 0.

Trace the sine_l signal in the HDL source files, and identify the input for sine_l.

5. In the Text Editor, right-click to open the popup menu, and select the Find in files option to search

for sine_l.

6. Select the Match whole word and Enabled design sources checkboxes, as shown in Figure 31, and

click Find.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=44

Logic Simulation www.xilinx.com 45
UG937 (v2019.1) June 4, 2019

Figure 31: Find in Files

The Find in Files results display at the bottom of the Vivado IDE, with all occurrences of sine_l

found in the sinegen.vhd file.

7. Expand the Find in Files results to view the results in the sinegen.vhd file.

The second result, on line 111, identifies a problem with the design. At line 111 in the

sinegen.vhd file, the m_axis_data_tdata_sine_low signal is assigned to sine_l. Since

line 111 is commented out, the sine_l signal is not connected to the low frequency DDS

compiler output, or any other input.

8. Uncomment line 111 in the sinegen.vhd file, and click the Save File button .

9. In the Tcl Console, remove the force on sine_l: remove_forces -all

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=45

Logic Simulation www.xilinx.com 46
UG937 (v2019.1) June 4, 2019

Step 10: Relaunch Simulation
By using breakpoints and line stepping, you identified the problem with the low frequency output of

the design and corrected it.

Since you modified the source files associated with the design, you must recompile the HDL source and

build new simulation snapshot. Do not just restart the simulation at time 0 in this case but rebuild the

simulation from scratch.

1. In sinegen.vhd, select one of the breakpoints, right-click and select Delete All Breakpoints.

2. Click the Relaunch button on the main toolbar menu.

Note: If prompted to save the Wave Config file, click yes.

The Vivado simulator recompiles the source files with xelab, and re-creates the simulation

snapshot. Now you are ready to simulate with the corrected design files. The relaunch button

will be active only after one successful run of Vivado Simulator using launch_simulation. If you

run the simulation in a Batch/Scripted mode, the relaunch button would be greyed out.

3. Click the Run All button (Figure 32) to run the simulation.

Observe the sine[19:0], the analog signal in the waveform configuration. The low frequency sine

wave looks as expected. The Tcl console results are:

[@3518000] LEDS_n = 0100

[@3523000] LEDS_n = 0001

[@3523000] LEDS_n = 0001

[@6008000] LEDS_n = 0101

[@6013000] LEDS_n = 0010

[@6013000] LEDS_n = 0010

$finish called at time : 7005 ns : File "ug937/sim/testbench.v" Line 63

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=46

Logic Simulation www.xilinx.com 47
UG937 (v2019.1) June 4, 2019

Figure 32: Corrected Low Frequency Output

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=47

Logic Simulation www.xilinx.com 48
UG937 (v2019.1) June 4, 2019

Conclusion
After reviewing the simulation results, you may close the simulation, and close the project. This

completes Lab #2. Up to this point in the tutorial, between Lab #1 and Lab #2, you have:

 Run the Vivado simulator using the Project Mode flow in Vivado IDE

 Created a project, added source files, and added IP

 Added a simulation-only file (testbench.v)

 Set simulation properties and launched behavioral simulation

 Added signals to the Waveform window

 Configured and saved the Waveform Configuration file

 Debugged the design bug using breakpoints and line stepping.

 Corrected an error, re-launched simulation, and verified the design

In Lab # 3, you will examine the Vivado simulator batch mode.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=48

Logic Simulation www.xilinx.com 49
UG937 (v2019.1) June 4, 2019

Lab 3: Running Simulation in Batch Mode

Introduction
You can use the Vivado simulator Non-Project Mode flow to simulate your design without setting up a

project in Vivado Integrated Design Environment (IDE).

In this flow, you:

 Prepare the simulation project manually by creating a Vivado simulator project script.

 Create a simulation snapshot file using the Vivado simulator xelab utility.

 Start the Vivado simulator GUI by running the xsim command with the resulting snapshot.

Step 1: Preparing the Simulation
The Vivado simulator Non-Project Mode flow lets you simulate your design without setting up a project

in the Vivado IDE.

You can compile the HDL files in a design, and create a simulation snapshot by either:

 Creating a Vivado simulator project script, specifying all HDL files to be compiled, and using the

xelab command to create a simulation snapshot, or

 Using specific Vivado simulator parser commands, xvlog and xvhdl, to parse individual source

files and write the parsed files into an HDL library on disk, and then using xelab to create a

simulation snapshot from the parsed files

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=49

Logic Simulation www.xilinx.com 50
UG937 (v2019.1) June 4, 2019

Creating the Vivado Simulator Project File

A Vivado simulator project script specifies design source files and libraries to parse and compile for

simulation. This method is useful to create a simulation project script that can be run repeatedly over

the course of project development.

The format for a Vivado simulator project script (prj file) is as follows:

verilog | vhdl| sv <library_name> {<file_name>.v|.vhd}

Where:

o verilog | vhdl | sv specifies whether the design source is a Verilog, VHDL, or SV file.

o <library_name>: Specifies the library into which you may compile the source file. If

unspecified, the default library for compilation is work.

o <file_name>.v|.vhd: Specifies the name of the design source file to compile.

IMPORTANT: While you can specify one or more Verilog source files on a single

command line, you can only specify one VHDL source on a single command line.

In this step, you build a Vivado simulator project script by editing an existing project script to add

missing source files. The command lines for the project script should be constructed using the syntax

described above.

1. Browse to the <Extract_Dir>/scripts folder.

2. Open the simulate_xsim.prj project script with a text editor.

3. Add the following commands to the project script:

vhdl xil_defaultlib "../sources/sinegen.vhd"

vhdl xil_defaultlib "../sources/debounce.vhd"

vhdl xil_defaultlib "../sources/fsm.vhd"

vhdl xil_defaultlib "../sources/sinegen_demo.vhd"

verilog xil_defaultlib "../sim/testbench.v"

4. Save and close the file.

You do not need to list the sources based on any specific order of dependency. The xelab command

resolves the order of dependencies, and automatically processes the files accordingly.

TIP: For your reference, a completed version of the tutorial files can be found in the

ug937-design-files/completed folder.

Manually Parsing Design Files

As an alternative to creating a Vivado simulator project script, you can compile individual design source

files directly from the command line using the xvlog or xvhdl commands to parse the design sources

and write them to an HDL library. You could use this method for simple simulation runs, or to define a

shell script and makefile compilation flow.

Parse individual or multiple Verilog files using the xvlog command with the following syntax format:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=50

Logic Simulation www.xilinx.com 51
UG937 (v2019.1) June 4, 2019

xvlog [options] <verilog_file | list_of_files>

Parse individual VHDL files using the xvhdl command with the following syntax format:

xvhdl [options] <VHDL_file>

For a complete list of available xvlog and xvhdl command options, see the Vivado Design Suite User

Guide: Logic Simulation (UG900). The parse_standalone.bat file in <Extract_Dir>/scripts or

<Extract_Dir>/completed provide examples of running xvlog and xvhdl directly.

Step 2: Building the Simulation Snapshot
In this step, you use the xelab command on the project script you previously edited

(simulate_xsim.prj) to elaborate, compile, and link all the sources for the design. The xelab utility

creates a simulation snapshot that lets you to simulate the design in the Vivado simulator.

The typical xelab command syntax is:

xelab -prj <project_file> -s <simulation snapshot> <library>.<top_unit>

Where:

o -prj <project_file>: Specifies a Vivado simulation project script to use for input.

o -s <simulation_snapshot>: Specifies the name of the output simulation snapshot.

o <library>.<top_unit>: Specifies the library and top-level module of the design.

Running xelab

In this step, you use the xelab command with the project file completed in Step 1 to elaborate,

compile, and link all the design sources to create the simulation snapshot. To run the xelab command,

must open and configure a command window.

1. On Windows, open a Command Prompt window. On Linux, simply skip to the next step.

2. Change directory to the Xilinx installation area, and run settings64.bat as needed to setup the

Xilinx tool paths for your computer:

cd install_path\Vivado\2019.x\settings64.bat

Note: The settings64.bat file configures the path on your computer to run the Vivado Design

Suite.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=51

Logic Simulation www.xilinx.com 52
UG937 (v2019.1) June 4, 2019

TIP: When running the xelab, xsc, xsim, xvhdl, or xvlog commands in batch files

or scripts, it may also be necessary to define the XILINX_VIVADO environment variable

to point to the installation hierarchy of the Vivado Design Suite. To set the

XILINX_VIVADO variable, you can add one of the following to your script or batch file:

On Windows -

set XILINX_VIVADO=<Vivado_install_area>/Vivado/2019.x

On Linux -

setenv XILINX_VIVADO <Vivado_install_area>/Vivado/2019.x

3. Change directory to the <Extract_Dir>/scripts folder.

The provided xelab batch file, xelab_batch.bat, is incomplete, and you must modify it

using the xelab syntax as previously described to produce the correct simulation snapshot.

4. Edit the xelab_batch.bat file to add the following options:

o Specify the project file: -prj simulate_xsim.prj

o Specify the output simulation snapshot: -s run_sineGen

o Specify the library and top-level design unit: xil_defaultlib.testbench

For a complete list of available xelab command options, see the Vivado Design Suite User

Guide: Logic Simulation (UG900).

5. Save and close the batch file.

6. In the command window, run the xelab_batch.bat file to compile and create the simulation

snapshot.

xelab_batch.bat

7. Examine the xelab output as it is transcribed to the Command Prompt window.

Note: The xelab command also writes xelab.log file in the directory from which it was run. The

log file contains all of the messages and results of the xelab command for you to review.

TIP: You can also use the xelab command after the xvlog and xvhdl commands

have parsed the HDL design sources to read the specified simulation libraries. The

xelab command would be the same as described here, except that it would not require

the -prj option since there would be no simulation project file.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=52

Logic Simulation www.xilinx.com 53
UG937 (v2019.1) June 4, 2019

Step 3: Manually Simulating the Design
In this step, you launch the Vivado simulator GUI by running the xsim command with the simulation

snapshot that you generated using the xelab command in Step 2. After you complete this step, you

can use the Vivado simulator GUI to explore the design in more detail.

In the same command window that you used for Step #2, type the following command:

xsim run_sineGen -gui -wdb simulate_xsim.wdb -view xsim_waveConfig

Where:

 run_sineGen -gui: Specifies the simulation snapshot that you generated using xelab, and

launches Vivado simulator in GUI mode.

 -wdb: Specifies the file name of the simulation waveform database file to output, or write, upon

completion of the simulation run.

 -view: Opens the specified waveform configuration file within the Vivado simulator GUI.

Note: You can use the waveform configuration file specified above, or use the tutorial_1.wcfg

file that you created in Lab #2 of this tutorial.

The Vivado Simulator GUI opens and loads the design (Figure 33). The simulator time remains at 0 ns

until you specify a run time. Run the simulation and explore the design.

Figure 33: Run Xsim GUI

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=53

Logic Simulation www.xilinx.com 54
UG937 (v2019.1) June 4, 2019

Conclusion
In this tutorial, you:

 Created a Vivado IDE project

 Downloaded source files and ran Vivado simulation

 Examined the simulation customization features

 Debugged and fixed a known issue within the source files

 Ran a Vivado simulation in batch mode using the Vivado simulation executable and switch options

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=54

Logic Simulation www.xilinx.com 55
UG937 (v2019.1) June 4, 2019

System Verilog Feature

Introduction
Vivado simulator now supports synthesizable as well as test bench/verification feature of System

Verilog IEEE 1800-2012. In this chapter, you will go through a System Verilog example to learn about

different debugging capabilities added in the Vivado simulator. You will use an IP example design

provided with Vivado.

Creating an Example Design
You will now generate an AXI-VIP example design.

1. Open Vivado.

2. Create a project with the name mySystemVerilog by invoking the following command in

Vivado Tcl console.

create_project mySystemVerilog ./mySystemVerilog

Figure 34: Vivado IDE Tcl Console

3. You will create an AXI-VIP example design that includes the following features:

a. Random Constraint

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=55

Logic Simulation www.xilinx.com 56
UG937 (v2019.1) June 4, 2019

b. Dynamic Types and Class

c. Virtual Interface

d. Assertion

e. Clocking Block

4. Invoke the following commands in Tcl console:

a. create_ip -name axi_vip -vendor xilinx.com -library ip -version 1.1 -
module_name axi_vip_0

b. open_example_project -force [get_ips axi_vip_0]

Now you have created an example design for AXI-VIP with the name axi_vip_0_ex.

Launching Simulation
You have an example project ready. Next, you will run the behavioral simulation. By default, the

simulation runs in a pre-compiled mode where the source code for static IP is not added in the project.

Run the simulation in a non-precompiled mode for a better understanding of the feature. Invoke the

following commands in Tcl console:

 set_property sim.use_ip_compiled_libs 0 [current_project]

 launch_simulation

This will run the simulation for 1000 ns.

Debugging Using Vivado Simulator
Vivado simulator supports System Verilog feature. In this exercise, you will explore the System Verilog

feature using the following:

 Scope Window

 Object Window

 Tcl Console

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=56

Logic Simulation www.xilinx.com 57
UG937 (v2019.1) June 4, 2019

Scope Window

System Verilog has a building block called interface. It differs in functionality when you compare it with

the module.

1. On the Scope window, click Expand All button .

2. You can now view the IF and PC interface instances. The IF and PC interface instance icons are

different than the module icons.

Figure 35: Scope Window

3. Right-click IF and select Go to Source Code. It will point to an interface definition.

Object Window

In System Verilog, all the net/variables are static type. They exist throughout the simulation. In System

Verilog, dynamic type is a new type along with static type. Class, Queue, and Associative Array are some

examples of dynamic type.

Unlike static type variables (int a; wire [7:0] b;), dynamic type variables do not have a fixed size

throughout the simulation. Variables keep changing during run-time. Through Object window, you can

view the value of a dynamic type variable during the simulation.

1. Click Restart button .

2. From the Scope window, select scope generic_tb present under the top module.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=57

Logic Simulation www.xilinx.com 58
UG937 (v2019.1) June 4, 2019

 Figure 36: Scope Window

3. Maximize the Objects window. As the simulation is yet to start, observe the Queue and Class

dynamic type in the Data Type column. The Value for Queue appears empty while for class it

appears null.

Figure 37: Objects Window

4. On Scope window, double-click generic_tb to see the text file.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=58

Logic Simulation www.xilinx.com 59
UG937 (v2019.1) June 4, 2019

 Figure 38: Scope Window

5. On the text editor window, click the Circle on line number 64 to add a break point.

Figure 39: Text Editor

6. Click Run All button, the simulation will stop at line number 64. On the Object window

master_monitor_transaction_queue value appears empty.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=59

Logic Simulation www.xilinx.com 60
UG937 (v2019.1) June 4, 2019

Figure 40: Objects Window

7. On the Vivado simulator toolbar menu, click the Step button . It executes the current

statement that is on line number 64 where the simulation is currently waiting. At this statement,

you are pushing an element after the execution. Your queue will be populated with a single

element.

8. In the Object window, the master_monitor_transaction_queue value is populated. This way

you can view the value of any dynamic type on the Object window.

Figure 41: Objects Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=60

Logic Simulation www.xilinx.com 61
UG937 (v2019.1) June 4, 2019

Tcl Console

Like Objects window, you can view the value of any dynamic type variable from Tcl Console as well.

1. Click Restart button .

2. From the Scope window, select scope generic_tb present under the top module.

 Figure 42: Scope Window

3. In Tcl console, invoke the report_objects command to display all objects present in the selected

scope. Also, the Queue and Class appear as object type.

Figure 43: Tcl Console

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=61

Logic Simulation www.xilinx.com 62
UG937 (v2019.1) June 4, 2019

4. Invoke the get_value command to find the current value of an object. The get value of

mst_monitor_transaction is returning null as its Class type while empty parenthesis appears

for slave_monitor_transaction_queue which is a Queue type.

Figure 44: Tcl Console

5. Click Run All button . The simulation stops at the line where you have added the break point.

6. Invoke get_value master_moniter_transaction_queue command and notice that it is still

empty.

7. On the Vivado simulator toolbar menu, click the Step button . It executes the current

statement that is on line number 64 where the simulation is currently waiting. At this statement,

you are pushing an element after the execution. Your queue will be populated with a single

element.

8. Invoke the get_value master_moniter_transaction_queue command and notice 1 entry in

the Queue. Like the Objects window, you can read the value of any dynamic type variable in Tcl

Console.

Functional Coverage
Functional coverage is a user defined metric that measures the extent to which the design specification,

as enumerated by features in the test plan, was exercised. It can be used to measure whether

interesting scenarios, corner cases, specification invariants, or other applicable design conditions—

captured as features of the test plan—have been observed, validated, and tested.

The Vivado simulator supports functional coverage. If your design contains any functional coverage

statement, the tool will generate a database (coverage database). To view coverage database, Vivado

simulator provides a utility named as xcrg (Xilinx Coverage Report Generator). Refer to the Vivado

Design Suite User Guide: Logic Simulation (UG900) for more information on functional coverage and

xcrg.

In the present example design, you will add a functional coverage code to view the utility of xcrg.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=62

Logic Simulation www.xilinx.com 63
UG937 (v2019.1) June 4, 2019

Cover Group Declaration
covergroup my_cover_group @(posedge aclk);

 m_axi_awlen_cp : coverpoint m_axi_awlen;

 m_axi_awcache_cp : coverpoint m_axi_awcache {

 option.comment = "cp with transition bins";

 bins a1 = (1=>2);

 bins b1 = (1,3=>4,5);

 bins b2[] = (1,3=>4,5);

 bins b3 = (1=>2), ([4:6] => 11,12);

 }

 m_axi_bresp_cp : coverpoint m_axi_bresp;

endgroup

my_cover_group obj1 = new();

In this example, you are declaring a covergroup named as my_cover_group and the sampling event as

posedge aclk. This covergroup contains three coverpoints. You will add the cover group declaration

code in the example design.

1. In Tcl console invoke the following command:

current_scope

/axi_vip_0_exdes_adv_mst_active__pt_passive__slv_comb/DUT/ex_design/axi_vip_m

st

2. Double-click axi_vip_mst scope to see the source code.

Figure 45: Scope Window

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=63

Logic Simulation www.xilinx.com 64
UG937 (v2019.1) June 4, 2019

3. The following file path will appear in the text editor, then add the cover group declaration before

endmodule and save it.

axi_vip_0_ex/axi_vip_0_ex.ip_user_files/bd/ex_sim/ip/ex_sim_axi_vip_mst_0/sim

/ex_sim_axi_vip_mst_0.sv

Figure 46: Text Editor

4. In Tcl console, invoke close_sim command to close the simulation running previously.

5. In Tcl console, invoke reset_simulation command to clean the simulation directory.

6. In Tcl console, invoke launch_simulation command to run the simulation.

7. C lick Run All button .

The simulation will stop after reaching $finish statement. The Vivado simulator has generated the

coverage database at the following location with the name (default name) xsim.covdb:

./axi_vip_0_ex.sim/sim_adv_mst_active__pt_passive__slv_comb/behav/xsim/

Invoke the following command to generate a report:

xcrg -report_format html -dir

./axi_vip_0_ex.sim/sim_adv_mst_active__pt_passive__slv_comb/behav/xsim/xsim.covdb/

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=64

Logic Simulation www.xilinx.com 65
UG937 (v2019.1) June 4, 2019

This will generate a directory with the name xcrg_report, it contains a .html report. The following is

the description of an example report:

1. Open dashboard.html file. The file contains details such as command, version, date and coverage

summary that shows only 8.85% of total bins are covered.

Figure 47: XCRG Dashboard

2. Click Groups button .

3. Click the Link under group report.

Figure 48: XCRG Group Report

4. You will see a detailed report as shown in the following figure:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=65

Logic Simulation www.xilinx.com 66
UG937 (v2019.1) June 4, 2019

Figure 49: XCRG Detailed Report

This way you can view the coverage and change your test bench/seed value to improve the coverage.

Assertion

In System Verilog, you have the following two types of assertion:

 Immediate assertion

 Concurrent Assertion

Immediate Assertion

Evaluated like an expression in ‘if’ statement.

always@(posedge clk)

 assert(data == 4’b1010);

Concurrent Assertion

This assertion is based on clock semantic and use sampled value of their expression. These assertions

can expand over multiple cycle.

always@ (posedge clk)

 a1: assert property (a ##2 b);

a2: assert property (@(posedge clk) a ##2b);

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=66

Logic Simulation www.xilinx.com 67
UG937 (v2019.1) June 4, 2019

In Vivado simulator, the concurrent assertion of 2nd form that is used outside the procedural block is

supported.

1. In Tcl console, invoke close_sim command to close the simulation running previously.

2. In Tcl console, invoke reset_simulation command to clean the simulation directory.

3. In Tcl console, invoke launch_simulation command to run the simulation.

4. In Tcl console, invoke the following command:

current_scope

/axi_vip_0_exdes_adv_mst_active__pt_passive__slv_comb/DUT/ex_design/axi_vip_p

assthrough/inst/IF/PC

Figure 50: Scope Window

5. Double-click the scope PC to open the source code.

6. Look at line no 1669 onwards. All the property declarations and assertions have been used.

Random Constraint

System Verilog has random constraint, which is used to generate a random value. Using this feature,

you can even set the constraint on a random variable.

For each simulation, the simulator is supposed to generate fixed set of values. In this example,

randomize call is happening 10 times so each time the simulator is expected to assign a different value

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=67

Logic Simulation www.xilinx.com 68
UG937 (v2019.1) June 4, 2019

on variable ‘b1’. If we close the simulation and run it again, the simulator is expected to give same 10

set of values like the previous run. This is called as random stability.

module top();

class c1;

rand bit [3:0] b1;

endclass

c1 obj1 = new();

initial

begin

 for(int i = 0; i < 10; i++)

 begin

 #5 obj1.randomize();

 $display("At time %t the value is %p", $time, obj1);

 end

end

endmodule

If you want different set of values, you should change the random seed value. In Vivado simulator, it is

done by passing -seed option to xsim. In Tcl Console, you need to invoke the following command:

set_property -name {xsim.simulate.xsim.more_options} -value {-seed 2000} -objects

[get_filesets sim_adv_mst_active__pt_passive__slv_comb]

With seed, you have to provide any integer value. So just by changing a ‘seed’ value, you can get a

different value. You don’t need to do compilation and elaboration again.

1. Add the following code in a file and name it as random.sv.

module top();

class c1;

rand bit [3:0] b1;

endclass

c1 obj1 = new();

initial

begin

 for(int i = 0; i < 10; i++)

 begin

 #5 obj1.randomize();

 $display("At time %t the value is %p", $time, obj1);

 end

end

endmodule

2. Perform the following in Tcl console:

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=68

Logic Simulation www.xilinx.com 69
UG937 (v2019.1) June 4, 2019

a. Invoke, xvlog -sv random.sv command to compile the code.

b. Invoke, xelab top -s top command to elaborate the code.

c. Invoke, xsim top -R command to simulate the code.

Notice o/p

run-all

At time 5000 the value is '{b1:3}

At time 10000 the value is '{b1:7}

At time 15000 the value is '{b1:7}

At time 20000 the value is '{b1:0}

At time 25000 the value is '{b1:0}

At time 30000 the value is '{b1:5}

At time 35000 the value is '{b1:9}

At time 40000 the value is '{b1:3}

At time 45000 the value is '{b1:12}

At time 50000 the value is '{b1:0}

exit

3. Re-run step 2b and notice the value is similar to the previous one.

4. Simulate the code with different SV seed xsim top -R -sv_seed 5000 and observe that the value

is different. Thus, you can generate different value without going through compile and elaboration

step.

Send Feedback

http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=69

Logic Simulation www.xilinx.com 70
UG937 (v2019.1) June 4, 2019

Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum

extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES

AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,

including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in

connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss

or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)

even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no

obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not

reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and

conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP

cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or

intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products

in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF

AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A

SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY

DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,

THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A

SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING

LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2012-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein

are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Logic%20Simulation&releaseVersion=2019.1&docPage=70

	Vivado Design Suite Tutorial: Logic Simulation
	Revision History
	Table of Contents
	Vivado Simulator Overview
	Introduction
	Tutorial Description
	Locating Tutorial Design Files
	Software and Hardware Requirements
	Microsoft Windows Support:
	Linux Support:

	Lab 1: Running the Simulator in Vivado IDE
	Introduction
	Step 1: Creating a New Project
	Step 2: Adding IP from the IP Catalog
	Adding Sine High
	Adding Sine Mid
	Adding Sine Low

	Step 3: Running Behavioral Simulation
	Conclusion

	Lab 2: Debugging the Design
	Introduction
	Step 1: Opening the Project
	Step 2: Displaying Signal Waveforms
	Add and Monitor Signals

	Step 3: Using the Analog Wave Viewer
	Logging Waveforms for Debugging
	Using TCL Command

	Step 4: Working with the Waveform Window
	Grouping Signals
	Adding Dividers
	Adding Signals from Sub-modules

	Step 5: Changing Signal Properties
	Viewing Hierarchical Signal Names
	Viewing Signal Values

	Step 6: Saving the Waveform Configuration
	Working with Multiple Waveform Configurations

	Step 7: Re-Simulating the Design
	Step 8: Using Cursors, Markers, and Measuring Time
	Step 9: Debugging with Breakpoints
	Using Breakpoints
	Stepping Through Source Code

	Step 10: Relaunch Simulation
	Conclusion

	Lab 3: Running Simulation in Batch Mode
	Introduction
	Step 1: Preparing the Simulation
	Creating the Vivado Simulator Project File
	Manually Parsing Design Files

	Step 2: Building the Simulation Snapshot
	Running xelab

	Step 3: Manually Simulating the Design
	Conclusion

	System Verilog Feature
	Introduction
	Creating an Example Design
	Scope Window
	Object Window
	Tcl Console

	Functional Coverage
	Cover Group Declaration
	Assertion
	Immediate Assertion
	Concurrent Assertion

	Random Constraint

	Legal Notices
	Please Read: Important Legal Notices

